Pharmacophore generation and atom-based 3D-QSAR of N-iso-propyl pyrrole-based derivatives as HMG-CoA reductase inhibitors

نویسندگان

  • Mahesh Kumar Teli
  • Rajanikant G K
چکیده

UNLABELLED BACKGROUND Coronary heart disease continues to be the leading cause of mortality and a significant cause of morbidity and account for nearly 30% of all deaths each year worldwide. High levels of cholesterol are an important risk factor for coronary heart disease. The blockage of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity by small molecule inhibitors has been shown to inhibit hypercholesterolemia. Herein, we describe the development of effective and robust pharmacophore model and the structure-activity relationship studies of 43N-iso-propyl pyrrole-based derivatives previously reported for HMG-CoA reductase inhibition. RESULTS A 5-point pharmacophore model was developed and the generated pharmacophore model was used to derive a predictive atom-based 3D quantitative structure-activity relationship analysis (3D-QSAR) model for the studied dataset. The obtained 3D-QSAR model has an excellent correlation coefficient value (r2 = 0.96) along with good statistical significance as shown by high Fisher ratio (F = 143.2). The model also exhibited good predictive power confirmed by the high value of cross validated correlation coefficient (q2 = 0.672). Further, pharmacophoric model was employed for virtual screening to identify four potential HMG-CoA reductase inhibitors. CONCLUSIONS The QSAR model suggests that electron-withdrawing character is crucial for the HMG-CoA reductase inhibitory activity. In addition to the electron-withdrawing character, hydrogen bond--donating groups, hydrophobic and negative ionic groups positively contribute to the HMG-CoA reductase inhibition. These findings provide a set of guidelines for designing compounds with better HMG-CoA reductase inhibitory potential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QSAR and Molecular Docking Studies of Oxadiazole-Ligated Pyrrole Derivatives as Enoyl-ACP (CoA) Reductase Inhibitors

A quantitative structure-activity relationship model was developed on a series of compounds containing oxadiazole-ligated pyrrole pharmacophore to identify key structural fragments required for anti-tubercular activity. Two-dimensional (2D) and three-dimensional (3D) QSAR studies were performed using multiple linear regression (MLR) analysis and k-nearest neighbour molecular field analysis (kNN...

متن کامل

Pharmacophore Development, Atom Based 3-d Qsar and Molecular Docking of Aurora a Kinase Inhibitors

Pharmacophore development, 3D-QSAR and docking studies were performed on twenty eight pyrrolotriazine derivatives as Aurora A kinase inhibitors. Five point pharmacophores with one hydrogen bond acceptor (A2), two hydrogen bond donor (D8, D11), one positive ionic (P15) and one aromatic ring (R17) as pharmacophoric features were developed. Amongst them the Pharmacophore hypothesis ADDPR.55 yielde...

متن کامل

Combined Pharmacophore Modeling, Docking, and 3D-QSAR Studies of PLK1 Inhibitors

Polo-like kinase 1, an important enzyme with diverse biological actions in cell mitosis, is a promising target for developing novel anticancer drugs. A combined molecular docking, structure-based pharmacophore modeling and three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed on a set of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as PLK1 inhibit...

متن کامل

Pharmacophore modeling of some novel indole b-diketo acid and coumarin-based derivatives as HIV integrase inhibitors

To design new chemotypes with enhanced potencies against the HIV integrase enzyme, 3D pharmacophore models were generated and QSAR study was carried out on 44 novel indole b-diketo acid derivatives and coumarin-based Inhibitors. A five-point pharmacophore with two hydrogen bond acceptors (A) and three aromatic rings (R) as pharmacophore features was developed by PHASE module of Schrodinger suit...

متن کامل

Discovery of Human HMG-Coa Reductase Inhibitors Using Structure-Based Pharmacophore Modeling Combined with Molecular Dynamics Simulation Methodologies

3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonate using NADPH and the enzyme is involved in rate-controlling step of mevalonate. Inhibition of HMGR is considered as effective way to lower cholesterol levels so it is drug target to treat hypercholesterolemia, major risk factor of cardiovascular disease. To discover novel HMGR inhibitor, we p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012